A project funded by the SmartSat CRC and led by the University of South Australia (UniSA) has used cutting-edge onboard AI technology to develop an energy-efficient early fire smoke detection system for South Australia’s first cube satellite, Kanyini.
It has helped Australian scientists to get closer to detecting bushfires in record time, thanks to cube satellites with onboard AI now able to detect fires from space 500 times faster than traditional on-ground processing of imagery.
The Kanyini mission is a collaboration between the SA Government, SmartSat CRC and industry partners to launch a 6 U CubeSat satellite into low Earth orbit to detect bushfires as well as monitor inland and coastal water quality.
Equipped with a hyperspectral imager, the satellite sensor captures reflected light from Earth in different wavelengths to generate detailed surface maps for various applications, including bushfire monitoring, water quality assessment and land management.
Lead researcher UniSA geospatial scientist Dr Stefan Peters says that, traditionally, Earth observation satellites have not had the onboard processing capabilities to analyse complex images of Earth captured from space in real-time.
“Smoke is usually the first thing you can see from space before the fire gets hot and big enough for sensors to identify it, so early detection is crucial,” Dr Peters says.
“For most sensor systems, only a fraction of the data collected contains critical information related to the purpose of a mission. Because the data can’t be processed on board large satellites, all of it is downlinked to the ground where it is analysed, taking up a lot of space and energy. We have overcome this by training the model to differentiate smoke from cloud, which makes it much faster and more efficient," he added.
Compared to the on-ground based processing of hyperspectral satellite imagery to detect fires, the AI onboard model reduced the volume of data downlinked to 16% of its original size, while consuming 69% less energy.
Using a past fire event in the Coorong as a case study, the simulated Kanyini AI onboard approach took less than 14 minutes to detect the smoke and send the data to the South Pole ground station.